

Transmitter L5 With ceramic cell for level measurement

Self monitoring masuring cell Local display and adjustment Usable turn down of 100 : 1 Output signal selectable for level or differential pressure Explosion protection type EEx ia IIC Smart with HART

#### GENERAL

Transmitter L5 is suitable for hydrostatic level measurement as well as for gauge, vacuum or differential pressure measurements with liquids, vapours and gases. Spans between 5 and 3000 mbar are available with three measuring cells. The output is a standard 4...20 mA signal proportional to the applied level (e.g. in a horizontal cylindrical container) respectively to the differential pressure. The microprocessorcontrolled electronics work on the two-wire principle. Transmitter energization is by means of a DC voltage.

#### DESCRIPTION

Transmitter L5 comprises the measuring cell, a mounting respectively pipe flange and a process flange with seals and the electronic housing.

The measuring cell is designed as a single-compartment device. Its body and both diaphragms are made of sintered aluminium oxide ceramic.

Superior features are offered by the corrosion resistant ceramic cell.

- With sticking media easy cleaning of the smooth ceramic diaphragm.
- The thickness of the ceramic diaphragm and its superior resistance against mechanical shocks exclude damage under normal operating conditions.

The level / pressure signal is detected as capacitamce via the position of the diaphragms.

The measuring cell is built-in in such way, that the diaphragm surface more or less is even with the seat of the gasket.

The lower respectively the reference pressure is fed to the process flange via the 1/4-18 NPT thread.

Process flanges wetted by the process media, can be of:

- Stainless steel
- Stainless steel coated with ECTFE
- Hastelloy C

Process seals are available in Viton, EPDM (NBR) or PTFE on Hastelloy C. Microprocessor-controlled electronics provide high-precision signal processing and monitoring, from the sensor to the signal output.

Measuring cell monitoring, which only is possible with ceramic sensor technology, offers outstanding safety for industrial processes.

Electronics and terminal compartment are hermetically separated, i.e. with the terminal compartment open, the electronics remain protected from environmental contamination. Parameter are adjustable by means of 4 push buttons or with an external hand-held control unit.

Transmitter L5 can be supplied with a digital indicator. Retrofitting is possible.

Depending on the measuring cell span, a turn-down of 100 : 1 is possible. This means for example, that the 100 mbar cell is adjustable downwards to a span of 1 mbar<sup>1)</sup>.

Intrinsic safe (EEx) versions are available.

#### **OPERATING PRINCIPLE**

#### Measuring cell

The measuring cell consists of the ceramic body and the two ceramic pressure diaphragms. The compartment between the two diaphragms is filled with Silicone- or inert oil. Any change in the differential pressure causes a displacement of of both diaphragms, which is measured directly as a capacitance. The difference between capacitance C1 and C2 corresponds to the applied pressure.

#### Self monitoring

Because of temperature proportional expansion of the oil volume, the sum od capacitances C1 and C2 also corresponds to the process temperature.

An integrated temperature measurement in the cell provides the actual process temperatur value. The microprocessor monitores continuously compares both values and provides an alarm signal in case of discrepancy. The alarm acts on the analogue output signal and can be set for upscale, downscale or off (keeping the process value).

#### **TECHNICAL DATA**

#### INPUT

#### Dimensions: mbar

| Cell             | 2D           | 3F          | 3H          |
|------------------|--------------|-------------|-------------|
| Nominal range    | 0100         | 0500        | 03,000      |
| Span             | 1100         | 5 500       | 30 3,000    |
| Span start       | -10099       | -500495     | -3,0002,970 |
| Nominal pressure | PN 16        | PN          | 100         |
| Filling media    | Silicone-oil | Mineral oil |             |

#### Static pressure

up to max. PN of corresponding measuring cell

#### Minimum pressure

100 mbar abs.

#### Static pressure effect

With symmetrical load: 0.2 % at PN for span start and span.

#### Overload limit: PN

#### Process media

Liquids, vapours and gases (aggressive and corrosive media with suitable material selection).

#### Fig. 1 Dimensions



#### Materials

Diaphragm

- ceramic

#### Gasket

- VITON (FPM)
- NBR (EPDM)
- PTFE on Hastelloy C

#### Pipe flange

- Stainless steel SS 316 L (1.4435)
- Stainless steel coated with ECTFE
- Hastelloy C- 276 (#2.4819)

#### Process flange

- Stainless steel SS 316 L (1.4435)

#### Bolts and nuts for process flange

- Stainless steel SS 316 Ti (1.4571)

#### Blind stopper/Venting valve

- SS 316 (order separately)

### OUTPUT

Output signal 4...20 mA

*Output current limiting:* 20.5 mA Lowest value: 3.8 mA (4 mA selectable) For alarm: selectable 3.6 mA; 21.5 mA; "hold value"

 $\label{eq:Ripple:} \begin{array}{l} \textit{Ripple:} \leq \pm 0.25 \ \% \ \text{fsd} \\ \text{HART protocol: } U_{pp} < 200 \ \text{mV} \ (47 \ \text{Hz} \\ \dots 125 \ \text{kHz}) \\ \text{and } U_{rms} < 2.2 \ \text{mV} \ (500 \ \text{Hz up to} \ 10 \ \text{kHz}) \end{array}$ 



#### CHARACTERISTIC

- proportional to the level
- proportional to the applied differential pressure
- free programmable

#### **Conformity error:** <0.1 % Terminal based for nominal span of cell

#### For TD 100:1 Conformity error

 $= \pm 0.1\% \times \frac{0.1 \times nominal \circ value}{set \circ span}$ 

(Hysterisis and reproducibility included)

#### Long term drift: 0.1 % / a

#### MAXIMUM LOAD

$$R_{Load} = \frac{U_{Supply} - U_{Min}[V]}{0,023[A]} - R_{Lead} \left[\Omega\right]$$

**Load effect:** < 0.01% per 100 
$$\Omega$$

### DYNAMIC RESPONSE

**Rise time:** depending from cell and span 0.4 up to 1.6 s **Average delay:** depending from cell, 0.5 up to 2 s

#### Damping

0 to 16 s adjustable by switch, per SW up to 40 s adjustable

#### Fig. 2 Electrical connection



#### **POWER SUPPLY**

#### SUPPLY VOLTAGE

11.5...45 VDC 11.5...30 VDC for EEx

Supply voltage effect 0.1 % between 11.5...45 VDC

#### Ripple

No effect for  $U_{\text{PP}} \leq \pm 5$  % within the nominal supply range.

#### **EXPLOSION PROTECTION**

Protection type: EEx ia IIC T4/T6

*Certificate of conformity* KEMA no. 97.D.2523 X

#### Installation

Transmitter in zone 1 hazarded area,

#### ENVIRONMENTAL CONDITIONS

#### TEMPERATURE LIMITS

| Nominal | tem | perature: | -38 | °C+85 | °C |
|---------|-----|-----------|-----|-------|----|
|         |     |           |     |       |    |

For storage: -40 °C...+100 °C

#### Temperature effects

on span start and span (incl. media temperature) ± 0.02 % / 10 K within -10 °C...+60 °C and ± 0.1% / 10 K within -40 to -10 °C and within +60 to 85 °C

## *Max. process temperature at the measuring cell*

-40°C...+85°C , for short periods 120°C, depending on process seal (+70 °C with EEx ia IIC T4)

| Process seal | Lower temperature limit |
|--------------|-------------------------|
| VITON (FPM)  | -20 °C                  |
| EPDM (NBR)   | -40 °C                  |
| PTFE         | -40 °C                  |

#### **Relative humidity**

100 % r.H. no condensation

Climatic category class GPC to DIN 40040

#### Vibration effect

< 0.1 % (tested to DIN IEC 68, part 2-6, referred to nominal span of cell).

#### ELECTROMAGNETIC COMPATIBILITY

Complies with EN 50082-2 and NAMUR with 30 V/m Tests to IEC 801-1 up to 801-6 Electromagnetic radiation to EN 50081-1 CE-labelled

#### GENERAL

#### HOUSING FOR ELECTRONICS

Di-cast aluminium AlSi 12 free of copper, with fully chromated surface, epoxy polyester coated, seals made of NBR.

#### HOUSING PROTECTION TYPE

IP 65 to DIN 40050

#### PROCESS COUPLING

Pipe flange: DN 80 PN40 ANSI 3 inch 150 lbs Process flange: femal 1/4-18NPT

### **ELECTRICAL CONNECTION**

Screw terminals for 2,5 mm<sup>2</sup> via PG13,5 cable gland

#### WEIGHT

appr. 10 kg

#### ACCESSORIES

Instructions for L5

#### Further documentation

Instructions for PD5/6 with HART

#### **FITTINGS**

#### Blind stopper

Set of 2 Material: stainless steel 1.4401(SS 316) 9407-290-00011

#### Venting valve

Set of 2 units Material: stainless steel 1.4401(SS316) 9407-290 00021

# 232 • • • 1

#### with LIADT systematic

| No display, non EEx<br>EEx ia IIC T4/T6<br>With LCD display, non EEx<br>With LCD display, EEx ia IIC T4/T6                                                                                                                                                                                                                                                                                                                                                                            | 5<br>6<br>7<br>8 |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|
| Mounting flange: material / seal<br>Stainl.steel 1.4435 / Viton (FPM)<br>Stainl.steel 1.4435 / NBR (EPDM)<br>ECTFE coated / Viton,(FPM)<br>ECTFE coated / NBR (EPDM)<br>ECTFE coated / PTFE on Hastelloy<br>Hastelloy C / Viton (FPM)<br>Hastelloy C / NBR (EPDM)<br>Hastelloy C / PTFE on Hastelloy                                                                                                                                                                                  |                  | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 |
| Calibration / unit<br>Calibrated from 0nominal value of cell<br>in mbar/bar, linear<br>Calibrated from 0nominal value of cell<br>in kPa/Mpa, linear<br>Calibrated from 0nominal value of cell<br>in mm H20, linear<br>Calibrated from 0nominal value of cell<br>in inch H20, linear<br>Calibrated from 0nominal value of cell<br>in kgf/cm2, linear<br>Calibrated from 0nominal value of cell<br>in psi, linear<br>Start, span in clear text, e.g %, linear/<br>square root/cylindric |                  |                                      |
| <b>Cell, nominal value / flange DN 8</b><br>Nominal pressure 16 bar                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                |                                      |

0

1

2

3

4

5

9

|                          | 100 mbar  |   | 1 |
|--------------------------|-----------|---|---|
| Nominal pressure 100 bar |           |   |   |
|                          | 500 mbar  |   | 2 |
|                          | 3000 mbar | 3 | 3 |
|                          |           |   |   |

#### Cell, nominal value / flange ANSI 3in, 150 lbs Nominal nr o 16 h

| Nominal pressure 10 bar | 100 mbar              | 2 | 1 |
|-------------------------|-----------------------|---|---|
|                         | 500 mbar<br>3000 mbar | Ę | 5 |

PMA

Deutschland PMA Prozeß- und Maschinen-Automation GmbH Miramstrasse 87, D-34123 Kassel

Tel./Fax: (0561) 505 - 1307/-1710 E-mail: mailbox@pma-online.de Internet: http://www.pma-online.de Your local distributor: